High-k-coPI project aims to deliver solutions towards the reduction of energy consumption by developing new advanced materials engineering with target on film capacitors for energy storage devices. Thus, the project may influence the progress of dielectric materials with high permittivity (k). Polymers are more applicable than inorganic ceramics in higher electric fields, being essential in designing and fabricating the next generation of efficient electronics. The main idea of this project is to find the optimum combination of copolyimide (coPI) properties given by the careful choice of various structural aromatic and aliphatic chain architectures. The originality brought by the present project consists in the use of flexible coPI films with high thermal stability, k and energy storage densities as viable and less costly alternative to the inorganic components. To fulfil the project objectives the work will consist in coPI component design and characterization, physico-chemical investigations with emphasis on morphology, crystallinity, mechanical, thermal and electrical properties as well as energy storage density, and optimization of the coPIs synthesis from the structure-property feedbacks. |